IT용어위키



팩토리얼

팩토리얼(Factorial)은 양의 정수 n에 대해 1부터 n까지의 모든 정수를 곱한 값을 의미하며, 기호 n!로 표기된다. 이는 조합론, 이항 계수, 확률 이론, 수열 분석 등 다양한 수학적 개념에서 활용된다.

정의

팩토리얼은 다음과 같이 정의된다.

  • n! = n × (n-1) × (n-2) × ... × 2 × 1 (n ≥ 1)
  • 0! = 1 (빈 곱의 값은 1로 정의됨)

예를 들어,

  • 1! = 1
  • 2! = 2 × 1 = 2
  • 3! = 3 × 2 × 1 = 6
  • 4! = 4 × 3 × 2 × 1 = 24
  • 5! = 5 × 4 × 3 × 2 × 1 = 120

팩토리얼의 성질

  • 재귀적 정의
    • n! = n × (n-1)! (n ≥ 1)
    • 예: 5! = 5 × 4!
  • 0!의 정의
    • 0! = 1로 정의됨 (수학적 일관성을 유지하기 위해)
  • 팩토리얼의 빠른 증가
    • 팩토리얼은 매우 빠르게 증가하는 함수이며, 큰 값에서 스털링 근사를 사용하여 근사적으로 계산 가능.
    • 예: 10! = 3,628,800, 20! ≈ 2.43 × 1018
  • 이항 계수와의 관계
    • 조합의 공식에서 등장: C(n, r) = n! / (r!(n - r)!)

스털링 근사

팩토리얼은 큰 수에서 빠르게 증가하므로, 근사적으로 계산할 때 스털링 근사(Sterling’s Approximation)를 사용할 수 있다.

  • n! ≈ √(2πn) × (n/e)n

이 근사는 확률론 및 통계학에서 널리 사용된다.

팩토리얼의 응용

팩토리얼은 다양한 수학적, 과학적 개념에서 활용된다.

  • 조합론
    • 순열: P(n, r) = n! / (n-r)!
    • 조합: C(n, r) = n! / (r!(n-r)!)
  • 확률론
    • 경우의 수 계산 (예: 순열, 조합)
  • 테일러 급수
    • ex = Σ (xn / n!)
  • 정보 이론
    • 엔트로피 계산과 데이터 압축

같이 보기


  출처: IT위키(IT위키에서 최신 문서 보기)
  * 본 페이지는 공대위키에서 미러링된 페이지입니다. 일부 오류나 표현의 누락이 있을 수 있습니다. 원본 문서는 공대위키에서 확인하세요!