IT용어위키



LSTM

Long Short Term Memory

RNN의 문제

RNN의 수식 표현 ht = fW(ht-1, xt)
  • 문장 구성 수 만큼 Hidden Layer 형성하여 매우 Deep한 구조
    • Recurrent에 따른 동일한 가중치(fW)가 곱해지게 되므로 아래 문제 발생
  • fW < 1 인 경우, Vanishing Gradient
  • fW > 1 인 경우, Exploding Gradient
  • 즉, 관련 정보와 그 정보를 사용하는 지점이 먼 경우 학습 능력 저하
    • 장기 기억을 사용하지 못하고 단기 기억만을 사용
  • LSTM(Long Short Term Memory)는 이 문제를 해결

RNN vs LSTM Cell State 개념도.png

구성 요소

LSTM 개념도.png

구성 요소 설명
Forget Gate Layer
  • 어떠한 정보를 반영할지에 대한 결정
  • sigmoid 활성화 함수를 통해 0~1사이의 값을 출력
Input Gate Layer
  • 새로운 정보가 cell state에 저장이 될지 결정하는 게이트
  • sigmoid layer, tanh layer로 구성
Update Cell State
  • forget gate와 input gate에서 출력된 값들을 cell state로 업데이트
Output Gate Layer
  • 출력값 결정 단계

  출처: IT위키(IT위키에서 최신 문서 보기)
  * 본 페이지는 공대위키에서 미러링된 페이지입니다. 일부 오류나 표현의 누락이 있을 수 있습니다. 원본 문서는 공대위키에서 확인하세요!