IT용어위키



디피 헬만

Diffie-Hellman Key Exchange

디피라는 사람과 헬만 이라는 사람이 공동 개발했다고 해서 '디피-헬만'이다. 디피-헬만 키 교환법, 디피-헬만 알고리즘, 디피-헬만 프로토콜등 다양한 이름으로 불린다.

핵심

디피-헬만법은 이산대수의 어려움을 이용한 알고리즘이다. 쉽게 말해 주어진 g, x, p 를 이용하여 y = g^x mod p 를 구하기는 쉽지만 g, y , p 값을 이용하여 원래의 x를 찾기 어렵다는 원리를 이용한 것이다.
  • 비대칭키(공개키) 알고리즘에서 사용되는 키 교환 방식이다.
  • 상대방의 공개키와 나의 개인키를 이용하여 비밀키를 생성한다.
  • A의 공개키와 B의 개인키를 DH연산하면 B의 비밀키가 되고
  • B의 공개키와 A의 개인키를 DH연산하면 A의 비밀키가 된다.
  • 이산대수법에 의거한 수학적 공식에 의해 A의 비밀키와 B의 비밀키는 같아진다.
  • 송신자와 수신자는 안전하게 교환된 비밀키를 사용하여 데이터를 암호화한 후 전달한다.

예시

  1. 당사자들은 임의 큰 소수 p와 그보다 작은 자연수 g를 선택한다.
    • p=17와 그보다 작은 자연수 g=2로 선택했다.
  2. 각자 자신의 개인 키를 선택한다.
    • A의 개인 키 = 11
    • B의 개인 키 = 13
  3. 상대방에게 각자 개인키로 g<개인 키> mod p를 계산한 공개 키를 보낸다.
    • A는 B에게 211(mod 17) = 8을 보낸다.
    • B는 A에게 213(mod 17) = 15를 보낸다.
  4. 각자 <상대 공개 키><본인 개인 키>(mod p) 계산을 통해 비밀키를 만들어낸다.
    • A는 받은 15으로 계산한다. 1511(mod 17) = 9
    • B는 받은 8로 계산한다. 813(mod 17) = 9
    • 공유된 키인 9를 사용한다.
  5. 결론
    • A만 알고 있는 키는 11, B만 알고 있는 키는 13이다.
    • 외부에 노출될 우려가 있는 값은 2, 17, 8, 15이다. (노출 되어도 상관 없음)
    • 둘만 알고 있는 키는 9이다. (개인 키를 모르기 때문에, 노출의 우려가 없음)

지금은 예시이기 때문에 매우 작은 숫자를 이용하였으나, 숫자가 수십~수백 자리로 커지게 되면 2, 17, 8, 15에 해당하는 숫자는 노출이 되어도 개인 키를 모르기 때문에 공유된 키 값을 유추하기 어렵다는 것이 수학적 안전성의 근거이다.

취약점

  • 신분위장 공격에 취약하다
    • 인증 과정이 없다.
    • 애초에 B가 아닌 사람이 B인척 하여 키를 교환할 수 있다.
    • 연산된 결과인 비밀키만 취득한 제 3자가 B 행세를 할 수도 있다.
  • 재전송 공격에 취약하다
    • 암호화된 정보를 스니핑 해서 재전송 함으로써 행위를 조작할 수 있다.
    • 정보의 무결성이 보장되지 않는다
디피-헬만 키 교환은 단순히 안전한 키 교환에 의한 안전성에 의존하므로 단독으로 사용하기엔 부족하다. 디피-헬만은 수 많은 프로토콜에서 사용되고 있지만 모두 인증, 무결성, 부인방지 등의 추가적인 안전성을 더해서 사용한다.

출처

출처 : [지식잡식 블로그]


  출처: IT위키(IT위키에서 최신 문서 보기)
  * 본 페이지는 공대위키에서 미러링된 페이지입니다. 일부 오류나 표현의 누락이 있을 수 있습니다. 원본 문서는 공대위키에서 확인하세요!